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Abstract—Given an n-length input signal x, it is well known
that its Discrete Fourier Transform (DFT), X, can be computed
in O(n log n) complexity using a Fast Fourier Transform. If the
spectrum X is exactly k-sparse (where k << n), can we do
better? We show that asymptotically in k and n, when k is sub-
linear in n (i.e., k ∝ nδ where 0 < δ < 1), and the support of the
non-zero DFT coefficients is uniformly random, we can exploit
this sparsity in two fundamental ways (i) sample complexity: we
need only M = rk deterministically chosen samples of the input
signal x (where r < 4 when 0 < δ < 0.99); and (ii) computational
complexity: we can reliably compute the DFT X using O(k log k)
operations, where the constants in the big Oh are small. Our
algorithm succeeds with high probability, with the probability of
failure vanishing to zero asymptotically in the number of samples
acquired, M . Our approach is based on filterless subsampling
of the input signal x using a small set of carefully chosen
uniform subsampling patterns guided by the Chinese Remainder
Theorem (CRT). Specifically, our subsampling operation on x
is designed to create aliasing patterns on the spectrum X that
“look like” parity-check constraints of good erasure-correcting
sparse-graph codes. We show how computing the sparse DFT X
is equivalent to decoding of these sparse-graph codes and is low in
both sample complexity and decoding complexity. We accordingly
dub our algorithm the FFAST (Fast Fourier Aliasing-based
Sparse Transform) algorithm. In our analysis, we rigorously
connect our CRT based graph constructions to random sparse-
graph codes based on a balls-and-bins model and analyze the
convergence behavior of the latter using well-studied density
evolution techniques from coding theory. We provide simulation
results in Section IV that corroborate our theoretical findings,
and validate the empirical performance of the FFAST algorithm.

I. INTRODUCTION

Spectral analysis using the Discrete Fourier Transform
(DFT) has been of universal importance in engineering and
scientific applications for a long time. The Fast Fourier Trans-
form (FFT) is the fastest known way to compute the DFT of an
arbitrary n-length signal, and has a computational complexity1

of O(n log n). Many applications of interest involve signals,
e.g. audio, image, video data, biomedical signals etc., which
have a sparse Fourier spectrum. If the n-length DFT, X, of
x, is k-sparse, where k << n, can we do better in terms of
both sample and computational complexity of computing the
sparse DFT? We answer this question affirmatively. Our main
result is that asymptotically in k and n, when k is sub-linear
in n (precisely, k ∝ nδ where 0 < δ < 1), our proposed

This research was funded in part by NSF grant 1116404.
1Recall that a single variable function f(x) is said to be O(g(x)), if

limx→∞ |f(x)| < c|g(x)| for some constant c.
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Fig. 1: Schematic block diagram of the FFAST architecture. The
n-point input signal x is subsampled by a set of uniform sampling
patterns, guided by the CRT, to obtain dD sub-streams. Each of the
d stages has D sub-streams, of length approximately equal to the
sparsity k. The aggregate number of samples M = D

∑d−1
i=0 fi � rk,

for a small constant r. Next, the (short) DFTs, of each of the resulting
sub-streams are computed using an efficient FFT algorithm of choice.
The big n-point DFT X is then synthesized from the smaller DFTs
using the peeling-like FFAST decoder.

FFAST (Fast Fourier Aliasing-based Sparse Transform) algo-
rithm reliably computes the DFT X using deterministically
chosen M = rk samples and O(k log k) operations. Further,
the oversampling ratio r < 4 when 0 < δ < 0.99, 2 and the
constants in the big Oh are small.

At a high level, our idea is to cleverly exploit rather than
avoid the aliasing to induce spectral artifacts that look like the
parity constraints of good erasure-correcting codes, e.g., Low-
Density-Parity-Check (LDPC) codes [2], fountain codes [3],
verification codes [4], etc. Why? These codes: (a) have low
computational complexity decoder; and (b) are near-capacity
achieving for the erasure channel. The first property bestows
the desired low computational complexity, while the second
property ensures that the sample complexity of the FFAST
algorithm is near-optimal. But how do we achieve this goal?
We cannot induce any arbitrary code in the spectral domain at
our will as we can control only the subsampling operation on
the time-domain signal. The key idea is to design subsampling
patterns, guided by the Chinese-Remainder-Theorem (CRT)
[5], that create the desired code-like aliasing patterns. Based
on the qualitative nature of the subsampling patterns needed,
our analysis is decomposed into two regimes:

2Our analysis applies for any value of 0 < δ < 1. The oversampling ratio
r increases as δ approaches 1, e.g., when δ = 0.999, r < 5.
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• The “very-sparse” regime (sparsity-index 0 < δ ≤ 1/3),
where the subsampling patterns are based on relatively
co-prime numbers.

• The “less-sparse” regime (1/3 < δ < 1), where the
subsampling patterns comprise of “cyclically-shifted”
overlapping co-prime integers.

Our approach is summarized in Fig. 1. Note that the FFAST
algorithm requires the signal length n to be a product of a few
(typically 3 to 9) distinct primes3. We provide a brief summary
of simulation results in Section IV to validate the empirical
performance of the FFAST algorithm. For more extensive sim-
ulation results see [1], where we apply the FFAST algorithm
to a wide variety of exactly and approximately sparse 1-D as
well as 2-D signals, including applications like MRI.

Related Work: The problem of computing a sparse DFT of
a signal is related to the rich literature of frequency estimation
[6], [9], [10], compressive-sensing (CS) [7], [8] and sampling
signals with finite rate of innovation [12]. While the frequency
estimation literature focus on ‘super-resolution’ techniques
based on well-studied statistical methods like MUSIC and
ESPRIT [9], [10], our approach combines tools from coding
theory, graph theory and signal processing. Unlike the com-
pressive sensing problem, where the resources to be optimized
are the number of measurements (where each measurement
can further be a linear combination of multiple input samples)
and the recovery cost, in our problem, we want to minimize
the number of input samples processed by an algorithm in
addition to the recovery cost.

A number of previous works [13], [14] and references
therein, have addressed the problem of computing a 1-D DFT
of a discrete-time signal that has a sparse Fourier spectrum,
in sub-linear sample and time complexity. Most of these
algorithms achieve a sub-linear time performance by first iso-
lating the non-zero DFT coefficients into different bins, using
specific filters or windows (typically of length O(k log(n))),
and then recovering them iteratively one at a time. As a
result, the sample and computational complexity is typically
O(k log(n)) or more. Moreover the constants involved in the
big-Oh notation can be large, e.g., see [15]. In [16], the
author proposes sub-linear time algorithms with a sample and
computational complexity of O(k poly(log n)) to compute a
sparse DFT, either with high probability or zero-error. The
algorithm in [16] exploits the CRT to identify the locations of
the non-zero DFT coefficients using O(poly(log n)) number
of sampling patterns. In contrast, the FFAST algorithm uses a
constant number of subsampling patterns, guided by the CRT,
to induce ‘good’ sparse-graph codes.

In summary, to the best of our knowledge, the FFAST
algorithm is the first that we are aware of to compute an
exactly k-sparse n-point DFT that has all of the following
features:

• it has O(k) sample complexity and O(k log k) computa-
tional complexity;

• it covers the entire sub-linear regime of 0 < δ < 1;

3This is not a major restriction as in many problems of interest, the choice
of n is available to the system designer, and choosing n to be a power of 2
is often invoked only to take advantage of the readily-available radix-2 FFT
algorithms.

• it has a probability of failure that vanishes to zero
asymptotically;

• it features the novel use of the Chinese Remainder
Theorem to guide the design of a small deterministic set
of uniform subsampling patterns that induce good sparse-
graph channel codes.

The rest of the paper is organized as follows. Section II
states the problem and presents the main result of the paper.
Section III exemplifies the mapping of computing the DFT to
decoding over an appropriate sparse-graph code. Section IV
provides simulation results that corroborate our theoretical
findings, and validate the empirical performance of the FFAST
algorithm and we conclude the paper in Section V.

II. PROBLEM FORMULATION AND MAIN RESULT

A. Problem formulation

Consider an n-length discrete-time signal x that is the sum
of k << n complex exponentials, i.e., its n-length discrete
Fourier transform has k non-zero coefficients:

x[p] =
k−1∑

q=0

aqe
2πiωqp/n, p = 0, 1, . . . , n− 1, (1)

where, we assume that the discrete frequencies ωq are uni-
formly randomly distributed in {0, 1, . . . , n − 1} and the
amplitudes aq ∈ C, for q = 0, 1, . . . , k − 1. We consider
the problem of identifying the k unknown frequencies and the
corresponding complex amplitudes aq from the time domain
samples x.

Notation Description
n Ambient dimension of the signal x.
k Number of non-zero DFT coefficients.

δ Sparsity-index: k ∝ nδ , 0 < δ < 1.
M Sample complexity: Number of samples of x

used by the FFAST algorithm to compute the DFT X.
r = M/k Oversampling ratio.

d Number of stages in the “sub-sampling front end”
of the FFAST architecture.

D
Number of sub-streams of input samples

per stage in the FFAST architecture.

fi
Number of samples of x per sub-stream

in the ith stage of the FFAST architecture.

(a)N a modulo N .

TABLE I: Glossary of important notations and definitions used in
the rest of the paper (also see Figure 1 for details).

B. Main result

Theorem 1. For any 0 < δ < 1, and n large enough, there
exists a FFAST algorithm with parameters (n, k,M), where
k = O(nδ), such that the FFAST algorithm can compute a
k-sparse DFT X of an n-length input x with:

1) Sample complexity: The algorithm needs M samples of
x, where M can be as small as rk, for r > 1 a small
constant that depends on the sparsity index δ;

2) Computational complexity: The computational com-
plexity is cM log(M), where the constant c is small and
is related to the constants associated with computing a
few approximately-M -length FFTs4.

4Note that when M = rk, the computational complexity is O(k log k).
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Fig. 2: The plot shows the achievable tradeoff between the oversam-
pling ratio r = M/k, and the sparsity index δ for 0 < δ < 0.99,
where k ∝ nδ . The FFAST algorithm computes the k-sparse n-point
DFT X of the n-point signal x, for r as low as the threshold given in
the plot. Note that for nearly the entire sub-linear regime of practical
interest, i.e., k < n0.99, the oversampling ratio r < 4.
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Fig. 3: A toy-example of the front end sub-sampling architecture of
the FFAST algorithm. The input to the FFAST architecture is a 20-
point discrete-time signal x. The input signal and its unit delayed
version are first subsampled by 5 to obtain two sub-streams (D =
2), each of length f0 = 4. A 4-point DFT of each sub-stream is
then computed to obtain the observations (Xs[.], X̃s[.]). Similarly,
downsampling by 4 followed by a 5-point DFT provides the second
set of f1 = 5 observations (Zs[.], Z̃s[.]).

3) Probability of success: The algorithm successfully com-
putes the k-sparse DFT X with probability at least 1-
O(1/M).
Proof: See Appendix A for a sketch of proof and [1] for

details.
III. FOURIER TRANSFORM USING DECODING ON

SPARSE-GRAPHS

In this section we describe our (deterministic) sub-sampling
“front-end” architecture as well as the associated FFAST
decoding ‘back-end” algorithm for computing the k-sparse n-
point DFT, and we will connect this to the framework of de-
coding over sparse-graph codes. We will use simple examples.
Consider a 20-point discrete-time signal x = (x[0], . . . , x[19])
whose 20-point DFT X is 5-sparse. Let the 5 non-zero DFT
coefficients of x be X[1] = 1, X[3] = 4, X[5] = 1, X[10] = 3
and X[13] = 7.

1) Aliasing: If a signal is subsampled in the time do-
main, its frequency components mix together, i.e.,
alias, in a pattern that depends on the sampling pro-
cedure. For example, consider uniform subsampling
of x by a factor of 5 (see Fig. 3) to get xs =
(x[0], x[5], x[10], x[15]). Then, the 4-point DFT Xs has
coefficients (Xs[0], Xs[1], Xs[2], Xs[3]) = (0, 9, 3, 4). In
general if the sampling period is N (we assume that N
divides n) then Xs[i] =

∑
j≡(i)n/N

X[j].

f0 = 4

f1 = 5

(Xs[0], X̃s[0])

(Xs[1], X̃s[1])

(Xs[2], X̃s[2])
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(Zs[1], Z̃s[1])
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(Zs[2], Z̃s[2])
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X[13]
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Fig. 4: A 2-left regular degree bi-partite graph, where the variable
(left) nodes correspond to the unknown DFT coefficients and the
check (right) nodes are the observations obtained through the FFAST
architecture shown in Fig. 3, for the 20-point example signal x. Each
check node has two complex valued observations.

2) Shift in time: Consider a circularly shifted sequence
x(1) obtained from x as x(1)[i] = x[(i + 1)n]. The
DFT coefficients of the shifted sequence are given as,
X(1)[j] = ωj

nX[j], where ωn = exp(2πı/n) is an nth

root of unity. In general a circular shift of n0 results in
X(n0)[j] = ωjn0

n X[j].

A. Computing a sparse DFT is equivalent to decoding on a
sparse-graph

The 20-point example signal x when processed through the
front-end of the FFAST architecture, produces the observations
(Xs[·], X̃s[·]) and (Zs[·], Z̃s[·]) as shown in Fig. 3. The relation
between the unknown DFT coefficients of the signal x and the
output observations generated through the FFAST architecture
can be represented using a bi-partite graph (see Fig. 4).
The left (variable) nodes correspond to the non-zero DFT
coefficients of x (unknown and to be computed) and the
right (check) nodes correspond to the observations generated
through the FFAST architecture of Fig. 3. Note that the
observation (Xs[1], X̃s[1]) is a combination of three non-zero
DFT coefficients of x, we refer to such check nodes as “multi-
tons”. Likewise the check nodes whose observation consists
of exactly one non-zero DFT coefficient of x are referred to as
“singletons”, e.g. (Xs[2], X̃s[2]), while the ones that consists
of all the zero DFT coefficients are called “zero-tons”, e.g.,
(Zs[2], Z̃s[2]). Consider first that a “genie” informs us which
check nodes are singletons, as well as, the location and value
of the contributing non-zero DFT coefficient. We will later
explain (in Section III-B) how to get rid of the genie. Then,
the FFAST algorithm can recover the DFT coefficients that
are connected to a singleton check node, e.g., X[1], X[3] and
X[10]. After, subtracting the contribution of these uncovered
DFT coefficients from the observations, more singleton check
nodes are created. Thus, with the help of the genie, the FFAST
algorithm can potentially recover all the 5 non-zero DFT
coefficients of x via an iterative peeling procedure on the graph
of Fig. 4. Thus, the FFAST architecture has transformed the
problem of computing the DFT of x into that of decoding over
a sparse bi-partite graph of Fig. 4.
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Algorithm 1 FFAST Decoder

1: Set the initial estimate of the n-point DFT X̂ = 0.
2: for each iteration do
3: for each check node do
4: Let (y[0], y[1]) be the observations of a check node.
5: if y[0] = y[1] = 0 then
6: the check node is a zero-ton.
7: else
8: singleton-test: If the location estimate ˆloc =

n
2π (∠y[1]− ∠y[0]), is an integer between 0 and
n− 1, then the check node is a singleton.

9: Peeling: If the check node is a singleton set
X̂[ ˆloc] = y[0]. Subtract the contribution of X̂[loc]
from all the neighboring check nodes.

10: else
11: the check node is a multi-ton.
12: end if
13: end for
14: end for

B. FFAST Decoder

In this section, we show how to get rid of the “genie” by
using the additional observations X̃s[·] and Z̃s[·]. First, we
make the following important observation: if a check node is
a singleton, then by computing the phase of the ratio of its
observations, e.g., n

2π∠(X̃s[2]/Xs[2]) = 10, we can identify
the index and the first observation Xs[2] = 3, provides the
value of the non-zero DFT coefficient, connected to this sin-
gleton check node. In general, as shown in [17], identifying the
support of a non-zero DFT coefficient connected to a singleton
check node from multiple observations is equivalent to the
problem of estimating the frequency of a single sinusoid from
its time domain samples. In particular, by having two5 obser-
vations per check node, one can identify whether the check
node is a zero-ton, singleton or multi-ton with overwhelmingly
high reliability. Algorithm 1 provides the pseudocode for
the FFAST decoder. It is easy to verify that performing the
peeling procedure on the example graph of Fig. 4 results in
successful decoding, with the coefficients being uncovered in
the following possible order: X10, X3, X1, X5, X13.

IV. SIMULATION RESULTS

In this section we validate the empirical performance of our
FFAST algorithm for exactly sparse 1-D signal. For more ex-
tensive simulation results see [1], where we apply the FFAST
algorithm to a wide variety of exactly and approximately
sparse 1-D as well as 2-D signals, including applications like
MRI. The simulation setup for exactly sparse 1-D signal is as
follows:

• Very-sparse regime (0 < δ ≤ 1/3): The input signal
x is of ambient dimension n = 511 × 512 × 513
≈ 134×106. The sparsity parameter k is varied from 400
to 1300, which corresponds to the very-sparse regime,

5For the case when the signal has an approximately sparse DFT, more
observations per check node will be needed to robustly identify whether the
check node is a zero-ton, singleton or multi-ton. I.e., in Fig. 1, D will no
longer be 2 as in the exactly sparse case.
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Fig. 5: The probability of success of the FFAST algorithm as a
function of the oversampling ratio r. The plot is obtained for the
two different sparsity regimes: i) the very-sparse regime and ii) the
less-sparse regime. Each point in the plot is obtained by averaging
over 10000 runs. Note that the oversampling ratio r < 4 is sufficient
for successful computation of the k-sparse n-point DFT using the
FFAST algorithm.

i.e., k ∝ n1/3. The FFAST architecture has d = 3 stages
and D = 2 sub-streams per stage (see Fig. 1). The
number of samples per sub-stream, for the three different
stages are relatively co-prime f0 = 511, f1 = 512 and
f2 = 513 respectively and the total number of samples6

M < 2(f0 + f1 + f2) = 3072.
• Less-sparse regime (1/3 < δ < 1): The input signal

x is of ambient dimension n = 16 × 17 × 19 × 21 ≈
0.1× 106. The sparsity parameter k is varied from 5000
to 19000, which corresponds to the less-sparse regime of
n0.73 < k < n0.85. The FFAST architecture has d = 4
stages and D = 2 sub-streams per stage. The number of
samples per sub-stream, for the four different stages are
f0 = 16× 17× 19 = 5168, f1 = 17× 19× 21 = 6783,
f2 = 19 × 21 × 16 = 6384 and f3 = 21 × 16 × 17 =
5712 respectively. Note that the number of samples in the
four stages are composed of “cyclically-shifted” co-prime
numbers. The total number of samples M < 48094.

• For each run, an n-dimensional k-sparse signal X is
generated with non-zero values Xi ∈ {±10} with uni-
formly random support in {0, 1 . . . , n − 1}. The time
domain signal x is then generated from X using an IDFT
operation and given to the FFAST algorithm as an input.

• Each sample point in Fig. 5 is averaged over 10000 runs.
• Decoding is successful if all the DFT coefficients are

recovered perfectly.

V. CONCLUSION

In this paper we have proposed a FFAST algorithm to
compute a k-sparse n-point DFT X, using deterministically
chosen O(k) samples in O(k log k) operations. Our approach
is based on filterless subsampling of the input signal x using
a small set of carefully chosen uniform subsampling patterns
guided by the Chinese Remainder Theorem (CRT). While the
theoretical claims in this paper are for 1-D exactly k-sparse
signal x, the FFAST algorithm can be extended to the more
general multi-dimensional and approximately sparse signals,

6The samples in the different sub-streams overlap, e.g., x[0] is common to
all the zero delay sub-streams in each stage. Hence, M < 2(f0 + f1 + f2).
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albeit at the cost of increased sample and computational
complexity. An empirical evidence of the noise robustness of
the FFAST algorithm for 1-D and 2-D signals is provided in
[1], which also contains more technical details of this paper.
A theoretical analysis of the noise robustness of the FFAST
algorithm is part of our future work.

APPENDIX

A. Sketch of a proof of Theorem 1

In this section we provide brief sketch of a proof of
Theorem 1 for k = O(n1/3), an operating point in the very-
sparse regime. In [1], we provide a detailed and complete proof
of Theorem 1. Let F = {f0, f1, f2}, be a set of pairwise co-

prime integers where fi = O(k), and m �
∑2

i=0 fi. Also

let n =
∏2

i=0 fi, i.e., k = O(n1/3). The integers fi’s are the
number of samples per sub-stream in d = 3 different stages
of the FFAST architecture (see Fig. 1).

B. Randomized construction based on the “Balls-and-Bins”
model: Ck1 (F ,m)

The ensemble Ck1 (F ,m) of bi-partite graphs with k variable
nodes on the left and m check nodes on the right is constructed
as follows. Partition the set of m check nodes into three subsets
of f0, f1 and f2 check nodes (see Fig. 4 for an example graph
where f0 = 4, f1 = 5, d = 2 and k = 5). Each variable node
is connected to one neighboring check node in each of the
d = 3 subsets, uniformly at random.

C. Ensemble of bipartite graphs constructed using the
Chinese-Remainder-Theorem (CRT): Ck2 (F , n)

Partition the set of m check nodes into three subsets of
f0, f1 and f2 check nodes. Consider a set I of k integers,
chosen uniformly at random with replacement between 0 and
n − 1. Assign these k integers to the k variable nodes in an
arbitrary order. Label the check nodes in the set i from 0 to
fi − 1 for all i = 0, 1, 2. A 3-left regular degree bi-partite
graph is then obtained by connecting a variable node with
an associated integer v to a check node (v)fi in the set i,
for i = 0, 1, 2. Note that the modulo rule used to generate a
graph in the ensemble Ck2 (F , n) is same as the one used in
Section III. Thus, the FFAST architecture of Fig. 1, generates
graphs from the CRT ensemble Ck2 (F , n), where the indices I
of the k variable nodes are the locations of the non-zero DFT
coefficients7 of the signal x.

Lemma 2. The ensemble of bipartite graphs Ck1 (F ,m) is
identical to the ensemble Ck2 (F , n).

Proof: See [1] for details.

The graphs in the ensemble Ck1 (F ,m) correspond to random
sparse-graph codes constructed based on a balls-and-bins
model. Hence, one can analyze the performance of the peeling-
decoder over the graphs from the ensemble Ck1 (F ,m), using
well-studied density evolution technique as in [18], [19]. Then,
using lemma 2 we obtain a bound on the performance of the
FFAST decoder over the graphs from the ensemble Ck2 (F , n).
Next, we highlight the main technical components required

7The integers in the set I are chosen uniformly at random, with replace-
ment, between 0 and n−1. A set I with repeated elements then corresponds
to a signal with fewer than k non-zero DFT coefficients.

to show that the FFAST-decoder successfully computes a k-
sparse n-point DFT with high probability.

• Density evolution: First, assume that a local neighborhood
of a fixed depth of every edge in a typical graph from
the ensemble is tree-like, i.e., cycle-free. Under this
assumption, all the messages between variable nodes and
the check nodes are independent. Using this independence
assumption, we derive a recursive equation that represents
the expected evolution of the number of singletons un-
covered at each round for this typical graph.

• Convergence to the cycle-free, case: Using a Doob mar-
tingale we show that a randomly chosen graph from the
ensemble behaves like a “typical” graph and the peeling-
decoder decodes all but an arbitrarily small fraction of
the variable nodes with high probability, in a constant
number of iterations.

• Completing the decoding using the graph expansion
property: First, we show that if a graph is an “expander”,
then once the peeling-decoder has successfully decoded
all but an arbitrarily small fraction of the variable nodes,
it decodes all the variable nodes. Later, we show that a
random graph from the ensemble is a good expander with
high probability.
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